An ACO Model for a Non-stationary Formulation of the Single Elevator Problem

نویسندگان

  • S. Molina
  • G. Leguizamón
  • Enrique Alba
چکیده

The Ant Colony Optimization (ACO) metaheuristic is a bio-inspired approach for hard combinatorial optimization problems for stationary and non-stationary environments. In the ACO metaheuristic, a colony of artificial ants cooperate for finding high quality solutions in a reasonable time. An interesting example of a non-stationary combinatorial optimization problem is the Multiple Elevators Problem (MEP) which consists in finding a sequence of movements for each elevator to perform in a building so that to minimize, for instance, the users waiting average time. Events like the arrival of one new user to the elevator queue or the fault of one elevator dynamically produce changes of state in this problem. A subclass of MEP is the the so called Single Elevator Problem (SEP). In this work, we propose the design of an ACO model for the SEP that can be implemented as an Ant Colony System (ACS).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic Algorithm-Based Optimization Approach for an Uncapacitated Single Allocation P-hub Center Problem with more realistic cost structure

A p-hub center network design problem is definition of some nodes as hubs and allocation of non-hub nodes to them wherein the maximum travel times between any pair of nodes is minimized. The distinctive feature of this study is proposing a new mathematical formulation for modeling costs in a p-hub center problem. Here, instead of considering costs as a linear function of distance, for the first...

متن کامل

A set-covering formulation for a drayage problem with single and double container loads

This paper addresses a drayage problem, which is motivated by the case study of a real carrier. Its trucks carry one or two containers from a port to importers and from exporters to the port. Since up to four customers can be served in each route, we propose a set-covering formulation for this problem where all possible routes are enumerated. This model can be efficiently solved to optimality b...

متن کامل

ACO-Based Neighborhoods for Fixed-charge Capacitated Multi-commodity Network Design Problem

The fixed-charge Capacitated Multi-commodity Network Design (CMND) is a well-known problem of both practical and theoretical significance. Network design models represent a wide variety of planning and operation management issues in transportation telecommunication, logistics, production and distribution. In this paper, Ant Colony Optimization (ACO) based neighborhoods are proposed for CMND pro...

متن کامل

A new multi-objective mathematical model for a Citrus supply chain network design: Metaheuristic algorithms

Nowadays, the citrus supply chain has been motivated by both industrial practitioners and researchers due to several real-world applications. This study considers a four-echelon citrus supply chain, consisting of gardeners, distribution centers, citrus storage, and fruit market. A Mixed Integer Non-Linear Programming (MINLP) model is formulated, which seeks to minimize the total cost and maximi...

متن کامل

MILP Formulation and Genetic Algorithm for Non-permutation Flow Shop Scheduling Problem with Availability Constraints

In this paper, we consider a flow shop scheduling problem with availability constraints (FSSPAC) for the objective of minimizing the makespan. In such a problem, machines are not continuously available for processing jobs due to preventive maintenance activities. We proposed a mixed-integer linear programming (MILP) model for this problem which can generate non-permutation schedules. Furthermor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007